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Nomenclature

Introduction
To handle moving interfaces numerically in solving melting and solidification
problems, two types of solution techniques have been developed. One is the time
dependent grid method and the other is the fixed grid method. Because of their
conceptual simplicity and ease of implementation, fixed grid approaches have
found wide application. The essential feature of fixed grid approaches is that

c = specific heat
ceff = effective specific heat (λ /∆T )
[C ] = heat capacity matrix
[CIJ ] = elements of heat capacity matrix
{F} = heat load vector
FI = elements of heat load vector
h = convection heat transfer

coefficient
H = enthalpy
k = thermal conductivity
[K] = conductance matrix
KIJ = elements of conductance matrix
n = outward normal of boundary
NI,NJ = shape function
q = heat flux due to conduction
Q = rate of internal heat generation 
T = temperature
Tf = ambient temperature
Ti = initial temperature
Tm = melting temperature
Tmn = lower limit of melting 

temperature (Tm–0.5∆T)

Tmp = upper limit of melting 
temperature (Tm+0.5∆T)

t = time
x,y,z = space co-ordinates

Greek symbols
∆t = time step
∆T = phase change temperature 

interval
Γ = boundary
λ = latent heat
ρ = density
Ω = solution domain

Superscripts
e = element 
i = ith iteration 
n = nth time step

Subscripts
I,J = node number of an element
l = liquid phase
s = solid phase
t = time t
t + ∆t = time t + ∆t

Note: The symbols defined above are subject to alteration on occasion
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the latent heat evolution is accounted for in the governing equation by defining
either an enthalpy, or an effective specific heat, or a heat source. Consequently,
the numerical solution can be carried out on a space grid that remains fixed
throughout the calculation process. 

In the original effective heat capacity method the latent heat effect is
approximated by a large effective heat capacity over a small temperature
range[1]. This approach is simple in concept and easy to implement.
Unfortunately, however, it is so sensitive to the choice of the phase change
temperature interval and time integration scheme that in some cases the correct
solution or even a solution cannot be obtained owing to non-convergence caused
by the abrupt change of specific heat at the interface. Many improved versions
of this approach have been reported over the last two decades (e.g. Comini et
al.[2], Morgan et al.[3], Guidice et al.[4], Lemmon[5], Pham[6] and Comini et
al.[7]). These improved versions have been well established and are effective in
solving a wide range of conduction phase change problems. However, in the
authors’ experience, non-convergence sometimes occurs when these approaches
are implemented with implicit iterative time integration schemes and a large
time step is used, e.g. the Lemmon scheme[5]. Swaminathan and Voller[8]
reported a source based method to deal with phase change problems. Their
scheme is strictly conservative and computationally efficient.

In this paper, the cause and cure of non-convergence in effective heat capacity
methods are presented. Based on the energy conservation law, the transient
semi-discretized governing equation based on the original effective heat
capacity method is reformulated.

Mathematical formulation
Let us take the original effective heat capacity method[1] for illustration. The
governing equation for phase change heat conduction based on this method can
be described by:

(1)

in which 

(2)

Finite element formulation
After spacewise discretization of equation (1), subject to the boundary condition
of the third kind (convection boundary condition), viz.
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(3)

being accomplished using the standard Galerkin method[9], we obtain the
following semi-discrete matrix system:

(4)

in which the superposed dot denotes differentiation with respect to time.
Typical elements of the matrices in equation (4) are

(5)

(6)

(7)

It is reiterated that the set of equations (4) is highly non-linear owing to the
abrupt change of specific heat and the thermal conductivity when phase change
takes place.

A lumped mass model[6,9] is used to calculate the heat capacity matrix [C].
The stabilized one-point quadrature algorithm[10,11] is employed to compute
the conductance matrix [K] and the heat load vector {F}.

The discretization of the time derivative in equation (4) is most often
achieved with a finite difference technique. Although many time-stepping
schemes are available, the most popular ones are two-time-level methods in
which iterations are required within each time step. Here we use backward
Euler procedure, viz.

(8)

According to this scheme, equation (4) can be approximated as:

(9)

Problem and cause analysis
A converged solution cannot be obtained with equation (9) even if a very large
value for the phase change temperature interval is assumed. Why does
equation (9) not converge? In the following we will analyse the cause.

Let us take a melting process for example. In order to clarify the explanation,
equation (9) is rewritten in a point form. For point I,
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(10)

According to the implicit scheme rules, the values of Cl, KIJ, and FI should be
updated with the latest temperature T i–1

t+∆t. Assume point I enters phase change
from solid state during the time interval, t to t + ∆t, and T i–1

t+∆t < Tmn (Tm –0.5∆T)
and T i

t+∆t > Tmn. At iteration i,cI takes on the value of cs and there is T i
t+∆t > Tmn.

T i
t+∆t has two possible situations. One is Tmn < T i

t+∆t < Tmp (Tm + 0.5∆T) and the
other is T i

t+∆t > Tmp. The latter case occurs when the phase change temperature
interval is very small or the time step is very large or both. For the latter case
phase change is stepped over in an iteration and latent heat effect is not taken
into account. A false solution is therefore reached.

For the former case the following will happen. At iteration i + 1, cI takes on
the value of ceff (λ/∆T) and CI becomes a very large number correspondingly
since ceff is in general a very large value. Compared with this large value of CI,
relative contributions of the other terms to equation (10) can be neglected.
Therefore, equation (10) becomes:

(11)

and therefore, T i+1
t+∆t ≈ Tt < Tmn. In this case T i+1

t+∆t is dragged back to a
temperature in solid state, and then an iteration i+2, cI takes on the value of cs
again. This results in Tmn < Ti+2

t+∆t < Tmp. At iteration i+3, the same situation as
iteration i+1 occurs. This explains why a converged solution can never be
obtained.

Even if the phase change temperature interval is assumed to be a very large
value, ceff is still in general tens, or even hundreds, of times larger than cs or cl.
Therefore, such temperature oscillations as described above cannot be avoided.

What is the true value of temperature T i+1
t+∆t? Since the real process is that at

iteration i the control volume has already entered the melting state, T i+1
t+∆t should

be in the the range of the melting temperature interval, i.e. Tmn < T i+1
t+∆t < Tmp.

Why do the above mentioned temperature oscillations occur? This is owing
to the non-conservative behaviour caused by the abrupt change of specific
heat in the time interval of t to t +∆t. In the following, we will reformulate the
heat transfer process based on the basic energy conservation law. After the
correct formulations are obtained, the non-conservation behaviour will be
seen clearly. 

In the Lemmon scheme[5], the effective specific heat is calculated as follows:

(12)

Similar temperature oscillation in the Lemmon scheme to that described above
occasionally occurs as it is implemented with an implicit iteration time
integration scheme and the time step exceeds a certain limit. This will be shown
in the illustrative examples.
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A conservative scheme
Here let us model a one-dimensional melting process for illustration. Assume a
control volume dx (see Figure 1) is in solid state at time t, and at time t+∆t it has
entered molten state. During the time interval ∆t the net thermal energy flowing
into the control volume by conduction is:

(13)

The thermal energy is absorbed by the material heat capacity and there is,
therefore, a temperature rise in the control volume. Thermal energy absorbed
by the control volume (see Figure 2) is:

(14)

According to the energy conservation law we obtain:

(15)

Figure 1.
Physical model

x

x + dx

q q +
∂q
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Figure 2.
Illustration of the heat
transfer process in the

H-T curve

t + ∆t

t

H

TTmn Tmp
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Since

(16)

equation (14) becomes

(17)

From equation (16) it can be seen clearly that it is not conservative for the
specific heat of the control volume to take the value of either cs or ceff during the
time interval in which phase change takes place.

The above mentioned non-conservation behaviour occurs in the time interval
not only when the control volume starts to enter melting, but also when the control
volume gets out of the phase change. When a control volume gets out of phase
change during the time interval, t to t + ∆t, the correct governing equation is:

(18)

For the case where the temperature of the control volume steps over the phase
change interval during the time interval, t to t + ∆t the correct governing equation is: 

(19)

For the case of freezing, similar formulations can be obtained. They are:

(20)

for entering phase change;

(21)

for exiting phase change; and

(22)

for stepping over phase change in a time interval ∆t.
For a time interval when there is no switch of states, the governing equation is

(23)

in which c is updated with equation (2).
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The reformulated governing equations are exactly conservative. As will be
seen in the test examples, temperature oscillation which results in non-
convergence is completely eliminated and the new scheme has no limitation on
selection of the phase change temperature interval. 

The Newton-Raphson method is used to solve the resulting algebraic
equation system. The convergence criteria selected are that the Cartesian norms
of both the increment of temperature rate and the residual of the algebraic
equation system are each less than a small constant, e.g. 1.0 × 10–6.

Implementation
Taking the melting case for illustration, four cases are required to distinguish
the implementation of the newly proposed scheme.

(1) if Tt < Tmn and T i
t+∆t < Tmn or Tt > Tmp and T i

t+∆t > Tmp, equation (23) is
used;

(2) if Tt < Tmn and Tmn < T i
t+∆t < Tmp, equation (17) is used;

(3) If Tmn < Tt < Tmp and T i
t+∆t > Tmp, equation (18) is used;

(4) if Tt < Tmn and T i
t+∆t < Tmp equation (19) is used.

No special treatment is required in the solution iteration process except for
checking the temperature of the element nodes at each iteration and adopting
the corresponding equation according to the temperature of the element node.

Illustrative examples
To demonstrate the accuracy and efficiency of the new conservative scheme,
solutions of four illustrative problems are presented. All the computations were
carried out by a Pentium 100 MHz.

Problem 1: Solidification of a semi-infinite slab of a liquid – constant thermal
properties
A liquid initially at a uniform temperature, 10°C, which is above its freezing
point (0°C) is confined to a half-space x > 0. At time t = 0, the boundary surface
at x = 0 is lowered to a temperature, –20°C and maintained at this temperature
for t > 0. The thermophysical properties are as follows: 

ks = kl = 2.22 W/m.K, cs = cl = 1,762 J/kg.K, ρ = 1,000 kg/m3, λ = 338,000 J/kg,
Tm = 0°C.

Two-dimensional elements are utilized to solve this problem although it is
physically one-dimensional. The finite element mesh is displayed in Figure 3 in
which BC = 1.0m. A phase change temperature interval of 1.0 × 10–10 is used for
the computations in this test problem.

Figure 3.
Finite element mesh

A D

B C

14

13



HFF
7,6

572

The Stefan number of this test problem is 0.104. Computations were carried out
using the optimal source based scheme of Swaminathan and Voller[8] (SV
scheme) as well as the scheme described above (GM scheme) with 40 elements
and a time step of 1,000 seconds. A total of 300 time steps is required to
complete each run for this problem. The convergence criteria are specified to be
1.0 × 10–6. As the computed slab domain is finite, comparison with the
theoretical infinite slab solution must be terminated when the temperature
begins to change appreciably at boundary DC. Table I shows a comparison of
the performance of the two schemes.

The same solidification problem is also computed with a large Stefan number of
1.04. In this problem all parameters are the same as those in the last problem
except for λ = 33,800 J/kg which is only one-tenth of that in the last problem.
The time step used in this computation is 150 seconds. Table II shows a
comparison of the performance of the GM and SV schemes.

From Tables I and II it can be seen that the accuracy and the computational
efficiency of the GM scheme and the SV scheme are almost the same. 

Problem 2: Solidification of a semi-infinite slab of a liquid – discontinuous
thermal properties
As in Problem 1 we used a Stefan number of 0.104. All other parameters are the
same as those in Problem 1 except for the thermal conductivities and the
specific heats of the phase change material. These thermophysical properties
are as follows:

Freezing front at
t = 3.0 × 105 Total number of CPU time
seconds (m) iterations (seconds)

Exact solution 0.2551
GM scheme 0.2533 619 16.4
SV scheme 0.2527 610 16.2

Table I.
Performance of methods
for one-dimensional test
problem (small Stefan
number)

Freezing front at
t = 4.5 × 104 Total number of CPU time
seconds (m) iterations (seconds)

Exact solution 0.2261
GM scheme 0.2245 617 16.5
SV scheme 0.2239 609 16.4

Table II.
Performance measures
for one-dimensional test
problem (large Stefan
number)
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ks = 2.22 W/m.K, kl = 0.556 W/m.K, cs = 1,762 J/kg.K, cl = 4,226 J/kg.K,
Computations were carried out using the Lemmon scheme (equation (12)), the
optimal source based scheme of Swaminathan and Voller[8] (SV scheme) as well
as the scheme described here (GM scheme) with 40 elements and a time step of
1,000 seconds. A total of 300 time steps is required to for each run of this
problem. A phase change temperature interval of 1.0 × 10–10 is used for the
computations in this test problem.

The implicit rule is used to update the thermophysical properties in the
solution iteration process. When phase change is taking place in one or more
nodes in an element the thermal conductivity of the element is calculated as
follows:

(24)

in which nen is the total node number of an element. The thermal conductivity
of an element node is updated directly according to the node temperature using
linear interpolation. 

Table III shows a comparison of the computational efficiency with these
three schemes. From this table it can be seen that the computational efficiencies
of the GM and the SV schemes are at the same level for this test problem.

Figure 4 displays the computed freezing front progress using these three
schemes and compares the results with the analytical solution[12]. It can be
seen from this figure that the GM scheme has better agreement with the
analytical solution than do the Lemmon and SV schemes. Also shown in this
figure is the result using 20 elements and a time step of 1,000 seconds. It can be
seen that the result is more accurate using the GM scheme even with half the
number of the meshes used with the Lemmon and SV schemes. It should be
noted that if a more complicated approach (Kirchoff approximation)[13] is used
to treat the discontinuous thermal conductivity the accuracy of the prediction
by the SV model is the same level as that by the GM model.

Numerical experiments showed that non-convergence occurs at time step 91
using the Lemmon scheme when the time step is increased to 1,100 seconds. This
is caused by the temperature oscillation at nodes 13 and 14 which are the

Total number of CPU time Total number of CPU time
iterations (seconds) iterations (seconds)

Convergence criteria 1.0 × 10–6 1.0 × 10–8

GM scheme 619 16.7 619 16.9
Lemmon scheme 679 18.5 977 27.5
SV scheme 610 18.2 610 18.1

Table III.
Comparison of 

computational efficiency
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junctions of elements 6 and 7. The temperatures at nodes 13 and 14 oscillate from
0.5007 to –0.6626 iteration by iteration and convergence cannot be reached. An
insight into the computation process determined that when the temperatures
oscillate from 0.5007 to –0.6626 the effective specific heat of element 6 oscillates
from 106,562.6 J/kg.K to 4,226 J/kg.K (specific heat of the liquid phase) and that
of element 7 from 1,762 J/kg.K (specific heat of the solid phase) to 159,043.6
J/kg.K. The oscillation of the element specific heat results in a jump in the value
of the effective specific heat of nodes 13 and 14 (from 54,162.3 J/kg.K to 81,634.8
J/kg.K). This jump leads to non-conservation of the final algebraic equations for
points 13 and 14. A similar explanation can be given for such observations made
on the original effective heat capacity method described previously.

Numerical experiments also showed that convergence can be reached even
with a very large time step, e.g. 3,000 seconds, and that the accuracy does not
degrade with the new conservative scheme. From Figure 4 it can be seen that
the results using a time step of 3,000 seconds are in very good agreement with
the analytical solution.

Problem 3. Solidification of a corner region
The corner region of a liquid body extending in the positive x and y-directions is
frozen by bringing the surface temperature to –1.0°C at time t = 0. The
thermophysical properties are ks = kl = 1.0 W/m.K, cs = cl = 1.0 J/kg.K, ρ = 1.0
kg/m3, Tm = 0°C, λ = 0.25 J/kg and the initial condition is Ti = 0.3°C. The phase
change temperature interval is specified to be 1.0× 10–10 K. 20 × 20 elements with
a time step of 0.001 second are employed. A total of 500 time steps is required to
complete each run for this problem. The finite element mesh is shown in Figure 5. 

Figure 4.
Comparison of the
computed interface
position with the
analytical solution
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Computations were also carried out using the Lemmon scheme, the optimal
source based scheme of Swaminathan and Voller (SV scheme) as well as the
scheme proposed in this study (GM scheme). With the time step of 0.001
seconds, the Lemmon scheme does not converge. A converged solution cannot
be obtained until the time step size is decreased to 0.0002 seconds. Table IV
shows a comparison of the average number of iterations required per time
step between the SV scheme and the GM scheme. It is found that the
computational efficiencies of the GM and the SV schemes are almost the
same.

Figure 6 presents the results of the GM and SV schemes and compares them
with the analytical solution[14] for the freezing front. It is found that the result
of the GM scheme is in good agreement with the analytical solution and is
identical to that of the SV scheme.

Problem 4
The geometry of the phase change material is a slice with a radius of 5cm as
shown in Figure 6. The material is initially at a uniform temperature of 20°C
with side AB and AC insulated. On the circumferential side, BC, there is heat
convection with the heat transfer coefficient varying linearly, from 17.5 to 87.5

Figure 5.
Finite element mesh

A D

B C

Total number of CPU time Total number of CPU time
iterations (seconds) iterations (seconds)

Convergence criteria 1.0 × 10–6 1.0 × 10–8

GM scheme 1,163 228.4 1,163 228.4
SV scheme 1,092 222.9 1,092 222.9

Table IV.
Comparison of

computational efficiency
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W/m2, from point B to point C. The ambient temperature is –23.6°C. The
thermophysical parameters are as follows:

ks = 1.55 W/m.K, kl = 0.5 W/m.K, cs = 1,240 J/kg.K, cl = 2,370 J/kg.K, ρ = 960
kg/m3, λ = 167,400 J/kg, Tm = –1.8°C.

Computations were carried out using 300 elements and 331 nodes. A total of
2,000 time steps is required to complete each run for this problem. The finite
element meshes are illustrated in Figure 7. The computed cases are listed in
Table V and compared with the performance of the SV scheme. 

Figure 6.
Comparison of the
computed interface
position with the
analytical solution
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From Table V it can be seen that for both large and very small phase change
temperature intervals the iteration numbers and the computing time are almost
the same between using the GM scheme and the SV scheme. This means that
the computational efficiencies of the two schemes are on the same level.
Numerical experiments also found that the Lemmon scheme does not converge
until the time step is decreased to two seconds.

Figures 8 and 9 display the temperature histories of points A, E and F for cases
1 and 2 respectively. The solid lines in the two figures are for the GM scheme
and the dashed lines for the SV scheme. It can be seen that the predicted results
are in very good agreement between the two schemes.

Also shown in Figures 8 and 9 are the results using the GM scheme with a
time step of 100 seconds; these are represented by the dashed lines. It can be
seen that the differences of the results between the time step sizes of 5 and 100
seconds are very small. Hence for the problems tested it appears that the new
scheme is relatively insensitive to the choice of time step. 

GM scheme SV scheme
Convergence criteria 1.0 × 1.0–6 Total number CPU time Total number CPU time
Case ∆t (s) ∆T (K) of iterations (seconds) of iterations (seconds)

1 5 1.0 × 10–10 4,847 751.2 4,547 782.9

2 5 2.0 5,784 950.3 5,752 992.0

Table V.
Comparison of

computational efficiency

Figure 8.
Temperature histories

(∆T = 1.0 × 10–10 K;
solid line for ∆t = 5

seconds; dashed line for
∆t = 100 seconds; 
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Concluding remarks
The cause of non-convergence resulting from temperature oscillation in effective
heat capacity methods for phase change problems has been analysed. Based on
the basic conservation law a new scheme was developed for the numerical
solution of phase change problems. This scheme eliminates occurrence of non-
convergence as well as false solutions. It is simple, easy to implement, and does
not have limitations in the choice of the phase change temperature interval.
Although it is implemented with the backward Euler time integration scheme,
extension to other time schemes is direct. Numerical examples have
demonstrated the effectiveness and the efficiency of the new scheme.
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