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Nomenclature

c specific heat Trp = upper limit of melting
Ceff effective specific heat (A/AT) tgmperature (T, +0.5AT)
[C] heat capacity matrix t = time

space co-ordinates

[Cii] elements of heat capacity matrix ~ X\¥.Z

{F} heat load vector Greek symbols

F elements of heat load vector At = time step

h convection heat transfer AT = phase change temperature
coefficient interval

H = enthalpy r = boundary

k = thermal conductivity A = latent heat

K] = conductance matrix p = density )

K, = elements of conductance matrix = solution domain

n = outward normal of boundary Superscripts

NN, = shape function e = element

q = heat flux due to conduction i = ith iteration

Q = rate of internal heat generation n = nth time step

T = temperature .

Tt = ambient temperature Subscripts

T = initial temperature 1,J f n_odg number of an element

T = melting temperature ! = liquid phase

m - . S = solid phase

Ton = lower limit of melting t = timet

temperature (T, ~0.5AT) t+ At = timet + At

Note: The symbols defined above are subject to alteration on occasion

Introduction

To handle moving interfaces numerically in solving melting and solidification
problems, two types of solution techniques have been developed. One is the time
dependent grid method and the other is the fixed grid method. Because of their
conceptual simplicity and ease of implementation, fixed grid approaches have
found wide application. The essential feature of fixed grid approaches is that
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the latent heat evolution is accounted for in the governing equation by defining
either an enthalpy, or an effective specific heat, or a heat source. Consequently,
the numerical solution can be carried out on a space grid that remains fixed
throughout the calculation process.

In the original effective heat capacity method the latent heat effect is
approximated by a large effective heat capacity over a small temperature
range[1]. This approach is simple in concept and easy to implement.
Unfortunately, however, it is so sensitive to the choice of the phase change
temperature interval and time integration scheme that in some cases the correct
solution or even a solution cannot be obtained owing to non-convergence caused
by the abrupt change of specific heat at the interface. Many improved versions
of this approach have been reported over the last two decades (e.g. Comini et
al.[2], Morgan et al.[3], Guidice et al.[4], Lemmon[5], Pham[6] and Comini et
al.[7]). These improved versions have been well established and are effective in
solving a wide range of conduction phase change problems. However, in the
authors’ experience, non-convergence sometimes occurs when these approaches
are implemented with implicit iterative time integration schemes and a large
time step is used, e.g. the Lemmon scheme[5]. Swaminathan and Voller[8]
reported a source based method to deal with phase change problems. Their
scheme is strictly conservative and computationally efficient.

In this paper, the cause and cure of non-convergence in effective heat capacity
methods are presented. Based on the energy conservation law, the transient
semi-discretized governing equation based on the original effective heat
capacity method is reformulated.

Mathematical formulation

Let us take the original effective heat capacity method[1] for illustration. The
governing equation for phase change heat conduction based on this method can
be described by:

o(pxTy o 0T ¢ 0T ¢, 0T
— = —(k—)+ (k) + —(k—)+ 1
e e bl G A G g g
in which
P, fl k,, T<T,-05AT
P, ¢ k=1p, A =Dk f, T,-05AT <T < T, +05AT (2)
o, ¢, k, 2T +05AT

Finite element formulation
After spacewise discretization of equation (1), subject to the boundary condition
of the third kind (convection boundary condition), viz.



ar
ko= h(T-T)). (3)

being accomplished using the standard Galerkin method[9], we obtain the
following semi-discrete matrix system:

[CIT}+ KT} = (F) @)

in which the superposed dot denotes differentiation with respect to time.
Typical elements of the matrices in equation (4) are

C.U:ZIQ,OCNJNJ daQ, (5)

5N,-5NJ+5N;6N;+5‘N;5NJ
x & &y &y O oz

K!_J’:ng k( )dQ+ ZJP hN;NJdF,(G)

Fi=XI QN dQ+ I .hT,N,dT . @)

It is reiterated that the set of equations (4) is highly non-linear owing to the
abrupt change of specific heat and the thermal conductivity when phase change
takes place.

A lumped mass model[6,9] is used to calculate the heat capacity matrix [C].
The stabilized one-point quadrature algorithm[10,11] is employed to compute
the conductance matrix [K] and the heat load vector {F}.

The discretization of the time derivative in equation (4) is most often
achieved with a finite difference technique. Although many time-stepping
schemes are available, the most popular ones are two-time-level methods in
which iterations are required within each time step. Here we use backward
Euler procedure, viz.

: r.,.-T
T - f+Af ' ‘ 8
(T} = (== ®)
According to this scheme, equation (4) can be approximated as:
(C+AKKT. = [C T+ {F} 9

Problem and cause analysis
A converged solution cannot be obtained with equation (9) even if a very large
value for the phase change temperature interval is assumed. Why does
equation (9) not converge? In the following we will analyse the cause.

Let us take a melting process for example. In order to clarify the explanation,
equation (9) is rewritten in a point form. For point I,
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(C,+ KT = DKL), o +CT+F, (10)

FEN

According to the implicit scheme rules, the values of C;, K,;, and F, should be
updated with the latest temperature T¢-A. Assume point | enters phase change
from solid state during the time interval, t to t + At, and TerA < Tpyy (T, —0.5AT)
and Tieae> Tpn. At iteration i C, takes on the value of ¢, and there is Teat > T,
Tia has two possible situations. One is T < Teiar < Tmp (Tm + 0.5AT) and the
other is T¢a > Timp. The latter case occurs when the phase change temperature
interval is very small or the time step is very large or both. For the latter case
phase change is stepped over in an iteration and latent heat effect is not taken
into account. A false solution is therefore reached.

For the former case the following will happen. At iteration i + 1, ¢, takes on
the value of ¢ (A/AT) and C, becomes a very large number correspondingly
since c is in general a very large value. Compared with this large value of C,,
relative contributions of the other terms to equation (10) can be neglected.
Therefore, equation (10) becomes:

C T ~CT, (11)
and therefore, T {4t = Tt < Tun. In this case T i34 is dragged back to a
temperature in solid state, and then an iteration i+2, ¢, takes on the value of c,
again. This results in Ty, < T&A < Tip. At iteration |+3 the same situation as
iteration i+1 occurs. This explains why a converged solution can never be
obtained.

Even if the phase change temperature interval is assumed to be a very large
value, ¢ is still in general tens, or even hundreds, of times larger than c, or c,.
Therefore, such temperature oscillations as described above cannot be avoided.

What is the true value of temperature T 4? Since the real process | is that at
iteration i the control volume has already entered the meltlng state, Tt+At should
be in the the range of the melting temperature interval, i.e. Ty < T iz < Tonp:

Why do the above mentioned temperature oscillations occur? This is owing
to the non-conservative behaviour caused by the abrupt change of specific
heat in the time interval of t to t +At. In the following, we will reformulate the
heat transfer process based on the basic energy conservation law. After the
correct formulations are obtained, the non-conservation behaviour will be

seen clearly.
In the Lemmon scheme[5], the effective specific heat is calculated as follows:
c _(VH-VH 2 L
4NNT. VT 12

Similar temperature oscillation in the Lemmon scheme to that described above
occasionally occurs as it is implemented with an implicit iteration time
integration scheme and the time step exceeds a certain limit. This will be shown
in the illustrative examples.



A conservative scheme Heat capacity
Here let us model a one-dimensional melting process for illustration. Assume a methods
control volume dx (see Figure 1) is in solid state at time t, and at time t+At it has

entered molten state. During the time interval At the net thermal energy flowing

into the control volume by conduction is:

" lg-(q+ %aﬁc)]dt = —fio %dxdt (13) 569

Figure 1.

9q
qg — —>a+5 ax Physical model

The thermal energy is absorbed by the material heat capacity and there is,
therefore, a temperature rise in the control volume. Thermal energy absorbed
by the control volume (see Figure 2) is:

[.ﬂ‘s(};n_z)+0‘x‘gﬁ(7;+m_Tmn)]£& (14)
According to the energy conservation law we obtain:
[oe (T, - T)+ peg (T - T,,)ldx = -fi'“'%dfdr (15)
H

/

t+At

~ Figure 2.

: Illustration of the heat
; transfer process in the
T T H-T curve

A\
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Since
ay or
1 _ Y 16
I 4 ké}f (16)

equation (14) becomes
s @, O
pe (T, ~T)+ pe (T o -T, )= Mg(kg)df (17)

From equation (16) it can be seen clearly that it is not conservative for the
specific heat of the control volume to take the value of either ¢, or ¢4 during the
time interval in which phase change takes place.

The above mentioned non-conservation behaviour occurs in the time interval
not only when the control volume starts to enter melting, but also when the control
volume gets out of the phase change. When a control volume gets out of phase
change during the time interval, t to t + At, the correct governing equation is:

L@ T
Py (T, =T+ pefT_ -T, )= = = (18)

For the case where the temperature of the control volume steps over the phase

change interval during the time interval, t to t + At the correct governing equation is:
g ar

T =T+ Py (T = 1)+ po(Tn = T ) = 17—k >4 1)

For the case of freezing, similar formulations can be obtained. They are:

|
(T, =T+ peg(T. - T, ) =1 ME("E i (20)
for entering phase change;
oy @, 67
Py (T =T+ pe (L., - T,) =1 ME“E)‘” (1)

for exiting phase change; and
vy @ O (22
}xJ(Tmp_?;)_‘chcﬁ'(Tmn_Tmp)-‘-.ms(I:+Ar_Tm)=I; E(kz)dr( )

for stepping over phase change in a time interval At.
For a time interval when there is no switch of states, the governing equation is

N/
pe(T. ~T) =17 k) (23)

in which ¢ is updated with equation (2).



The reformulated governing equations are exactly conservative. As will be
seen in the test examples, temperature oscillation which results in non-
convergence is completely eliminated and the new scheme has no limitation on
selection of the phase change temperature interval.

The Newton-Raphson method is used to solve the resulting algebraic
equation system. The convergence criteria selected are that the Cartesian norms
of both the increment of temperature rate and the residual of the algebraic
equation system are each less than a small constant, e.g. 1.0 x 1075,

Implementation
Taking the melting case for illustration, four cases are required to distinguish
the implementation of the newly proposed scheme.

(1) if Ty < Ton and Teeae < Tonn OF Ty > Ty and Tieae > Top, €quation (23) is
used:;

(2) if Te< Ton and Tonn < Teae < Tryp, €quation (17) is used;
(3) If Ton < Ty < Topp and Tieae > Top, €quation (18) is used;
(4) if T, < Tmn and Tieae < Top quation (19) is used.

No special treatment is required in the solution iteration process except for
checking the temperature of the element nodes at each iteration and adopting
the corresponding equation according to the temperature of the element node.

Illustrative examples

To demonstrate the accuracy and efficiency of the new conservative scheme,
solutions of four illustrative problems are presented. All the computations were
carried out by a Pentium 100 MHz.

Problem 1: Solidification of a semi-infinite slab of a liquid — constant thermal
properties
A liquid initially at a uniform temperature, 10°C, which is above its freezing
point (0°C) is confined to a half-space x > 0. At time t = 0, the boundary surface
at x = 0 is lowered to a temperature, —20°C and maintained at this temperature
for t > 0. The thermophysical properties are as follows:
ke=k =222 W/mK, ¢, = ¢ =1762Jkg.K, p= 1,000 kg/m?, A = 338,000 J/kg,

T,.,=0°C

mTwo-dimensional elements are utilized to solve this problem although it is
physically one-dimensional. The finite element mesh is displayed in Figure 3 in
which BC = 1.0m. A phase change temperature interval of 1.0 x 10710 is used for
the computations in this test problem.

A 14 D
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Figure 3.
Finite element mesh
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Table I.

Performance of methods
for one-dimensional test
problem (small Stefan
number)

The Stefan number of this test problem is 0.104. Computations were carried out
using the optimal source based scheme of Swaminathan and Voller[8] (SV
scheme) as well as the scheme described above (GM scheme) with 40 elements
and a time step of 1,000 seconds. A total of 300 time steps is required to
complete each run for this problem. The convergence criteria are specified to be
1.0 x 1075, As the computed slab domain is finite, comparison with the
theoretical infinite slab solution must be terminated when the temperature
begins to change appreciably at boundary DC. Table | shows a comparison of
the performance of the two schemes.

Freezing front at

t=23.0x10° Total number of CPU time
seconds (m) iterations (seconds)
Exact solution 0.2551
GM scheme 0.2533 619 16.4
SV scheme 0.2527 610 16.2

Table II.

Performance measures
for one-dimensional test
problem (large Stefan
number)

The same solidification problem is also computed with a large Stefan number of
1.04. In this problem all parameters are the same as those in the last problem
except for A = 33,800 J/kg which is only one-tenth of that in the last problem.
The time step used in this computation is 150 seconds. Table Il shows a
comparison of the performance of the GM and SV schemes.

Freezing front at

t=45 x 10* Total number of CPU time
seconds (m) iterations (seconds)
Exact solution 0.2261
GM scheme 0.2245 617 16.5
SV scheme 0.2239 609 16.4

From Tables I and Il it can be seen that the accuracy and the computational
efficiency of the GM scheme and the SV scheme are almost the same.

Problem 2: Solidification of a semi-infinite slab of a liquid — discontinuous
thermal properties

As in Problem 1 we used a Stefan number of 0.104. All other parameters are the
same as those in Problem 1 except for the thermal conductivities and the
specific heats of the phase change material. These thermophysical properties
are as follows:



k= 2.22 Wim.K, k= 0.556 W/im.K, ¢, = 1,762 J/kg.K, ¢, = 4,226 J/kg K,

Computations were carried out using the Lemmon scheme (equation (12)), the
optimal source based scheme of Swaminathan and Voller[8] (SV scheme) as well
as the scheme described here (GM scheme) with 40 elements and a time step of
1,000 seconds. A total of 300 time steps is required to for each run of this
problem. A phase change temperature interval of 1.0 x 1010 is used for the
computations in this test problem.

The implicit rule is used to update the thermophysical properties in the
solution iteration process. When phase change is taking place in one or more
nodes in an element the thermal conductivity of the element is calculated as
follows:

1 én
k=—> k: 24
, nen§ N (24)

in which nen is the total node number of an element. The thermal conductivity
of an element node is updated directly according to the node temperature using
linear interpolation.

Table 111 shows a comparison of the computational efficiency with these
three schemes. From this table it can be seen that the computational efficiencies
of the GM and the SV schemes are at the same level for this test problem.

Total number of CPU time Total number of CPU time

iterations (seconds) iterations (seconds)
Convergence criteria 1.0x 1076 1.0x 1078
GM scheme 619 16.7 619 16.9
Lemmon scheme 679 185 977 275
SV scheme 610 18.2 610 18.1
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Table I11.
Comparison of
computational efficiency

Figure 4 displays the computed freezing front progress using these three
schemes and compares the results with the analytical solution[12]. It can be
seen from this figure that the GM scheme has better agreement with the
analytical solution than do the Lemmon and SV schemes. Also shown in this
figure is the result using 20 elements and a time step of 1,000 seconds. It can be
seen that the result is more accurate using the GM scheme even with half the
number of the meshes used with the Lemmon and SV schemes. It should be
noted that if a more complicated approach (Kirchoff approximation)[13] is used
to treat the discontinuous thermal conductivity the accuracy of the prediction
by the SV model is the same level as that by the GM model.

Numerical experiments showed that non-convergence occurs at time step 91
using the Lemmon scheme when the time step is increased to 1,100 seconds. This
is caused by the temperature oscillation at nodes 13 and 14 which are the
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Figure 4.
Comparison of the
computed interface
position with the
analytical solution

Phase front (m)

0.30+
0.25- At=3,000 s .
[ )
[)
[)
0.20 3
[)
)
m)

0.157 A At=1,000s
0.10- Key

2 GM scheme, 40 elements

— Analytical solution
0.05- v GM scheme, 20 elements
.05 © GM scheme, 40 elements
e | emmon scheme, 40 elements
o SV scheme, 40 elements
0 T T T T T T 1
0 5 10 15 20 25 30
Time tx 10%s

junctions of elements 6 and 7. The temperatures at nodes 13 and 14 oscillate from
0.5007 to —0.6626 iteration by iteration and convergence cannot be reached. An
insight into the computation process determined that when the temperatures
oscillate from 0.5007 to —0.6626 the effective specific heat of element 6 oscillates
from 106,562.6 J/kg.K to 4,226 J/kg.K (specific heat of the liquid phase) and that
of element 7 from 1,762 J/kg.K (specific heat of the solid phase) to 159,043.6
J/kg.K. The oscillation of the element specific heat results in a jump in the value
of the effective specific heat of nodes 13 and 14 (from 54,162.3 J/kg.K to 81,634.8
J/kg.K). This jump leads to non-conservation of the final algebraic equations for
points 13 and 14. A similar explanation can be given for such observations made
on the original effective heat capacity method described previously.

Numerical experiments also showed that convergence can be reached even
with a very large time step, e.g. 3,000 seconds, and that the accuracy does not
degrade with the new conservative scheme. From Figure 4 it can be seen that
the results using a time step of 3,000 seconds are in very good agreement with
the analytical solution.

Problem 3. Solidification of a corner region

The corner region of a liquid body extending in the positive x and y-directions is
frozen by bringing the surface temperature to —1.0°C at time t = 0. The
thermophysical properties are k, = k, = 1.0 W/mK, ¢, = ¢, = 1.0 JkgK, p= 1.0
kg/m3, T,=0°C,A=025Jkg and the initial condition |sT =0.3°C. The phase
change temperature interval is specified to be 1.0x 10710K. 20 x 20 elements with
a time step of 0.001 second are employed. A total of 500 time steps is required to
complete each run for this problem. The finite element mesh is shown in Figure 5.



Computations were also carried out using the Lemmon scheme, the optimal
source based scheme of Swaminathan and Voller (SV scheme) as well as the
scheme proposed in this study (GM scheme). With the time step of 0.001
seconds, the Lemmon scheme does not converge. A converged solution cannot
be obtained until the time step size is decreased to 0.0002 seconds. Table IV
shows a comparison of the average number of iterations required per time
step between the SV scheme and the GM scheme. It is found that the
computational efficiencies of the GM and the SV schemes are almost the
same.

Total number of CPU time Total number of CPU time

iterations (seconds) iterations (seconds)
Convergence criteria 1.0x 1076 1.0x 1078
GM scheme 1,163 2284 1,163 2284
SV scheme 1,092 2229 1,092 2229

Heat capacity
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Figure 5.
Finite element mesh

Table IV.
Comparison of
computational efficiency

Figure 6 presents the results of the GM and SV schemes and compares them
with the analytical solution[14] for the freezing front. It is found that the result
of the GM scheme is in good agreement with the analytical solution and is
identical to that of the SV scheme.

Problem 4

The geometry of the phase change material is a slice with a radius of 5cm as
shown in Figure 6. The material is initially at a uniform temperature of 20°C
with side AB and AC insulated. On the circumferential side, BC, there is heat
convection with the heat transfer coefficient varying linearly, from 17.5 to 87.5
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Figure 6.
Comparison of the
computed interface
position with the
analytical solution

Figure 7.
Finite element mesh

y/(at)l/Z
2,
1.5+
17
Key
057 = Analytical solution
o GM scheme
s SV scheme
0y \ \ \ \
0 0.5 1 1.5 2
X/(C(t)llz

W/m?2, from point B to point C. The ambient temperature is —23.6°C. The
thermophysical parameters are as follows:

k=155 W/mK, k =05W/mK,c,=1240 JkgK, ¢, = 2370 J/kgK, p =960
kg/md, A = 167,400 J/kg, T, = -1.8°C.
Computations were carried out using 300 elements and 331 nodes. A total of
2,000 time steps is required to complete each run for this problem. The finite

element meshes are illustrated in Figure 7. The computed cases are listed in
Table V and compared with the performance of the SV scheme.

C

[T T[T T 71777




From Table V it can be seen that for both large and very small phase change
temperature intervals the iteration numbers and the computing time are almost
the same between using the GM scheme and the SV scheme. This means that
the computational efficiencies of the two schemes are on the same level.
Numerical experiments also found that the Lemmon scheme does not converge
until the time step is decreased to two seconds.

GM scheme SV scheme
Convergence criteria 1.0 x 1.0 Total number CPU time Total number  CPU time
Case  At(s) AT (K) of iterations (seconds) of iterations  (seconds)
1 5 1.0 x 10710 4,847 751.2 4,547 782.9
2 5 20 5,784 950.3 5,752 992.0
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Table V.
Comparison of
computational efficiency

Figures 8 and 9 display the temperature histories of points A, E and F for cases
1 and 2 respectively. The solid lines in the two figures are for the GM scheme
and the dashed lines for the SV scheme. It can be seen that the predicted results
are in very good agreement between the two schemes.

Also shown in Figures 8 and 9 are the results using the GM scheme with a
time step of 100 seconds; these are represented by the dashed lines. It can be
seen that the differences of the results between the time step sizes of 5 and 100
seconds are very small. Hence for the problems tested it appears that the new
scheme is relatively insensitive to the choice of time step.

Temperature (°C)
25+

20
15—
10+

/
Point E

/
Point F

0 1 2 3 4 5 6 7 8 9 10
Time 1.0 x 103 (s)

Figure 8.
Temperature histories
(AT =1.0x 10710 k;
solid line for At=5
seconds; dashed line for
At =100 seconds;
dash-and-dot line for
SV scheme)




HFF
7,6

578

Figure 9.
Temperature histories
(AT = 2 K; solid line for
At = 5 seconds; dashed
line for At = 100
seconds; dash-and-dot
line for SV scheme

Temperature ("C)
25+

20

15+

25T 71 7T T T T T T T T 1
0O 1 2 3 4 5 6 7 8 9 10

Time 1.0 x 103 (s)

Concluding remarks

The cause of non-convergence resulting from temperature oscillation in effective
heat capacity methods for phase change problems has been analysed. Based on
the basic conservation law a new scheme was developed for the numerical
solution of phase change problems. This scheme eliminates occurrence of non-
convergence as well as false solutions. It is simple, easy to implement, and does
not have limitations in the choice of the phase change temperature interval.
Although it is implemented with the backward Euler time integration scheme,
extension to other time schemes is direct. Numerical examples have
demonstrated the effectiveness and the efficiency of the new scheme.
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